Ghi nhớ bài học |

Nhị thức Newton

 NHỊ THỨC NEWTON

 

A. Lí thuyết cơ bản

 

1. Công thức Nhị thức Newton

\displaystyle {{(a+b)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}.{{b}^{k}}=C_{n}^{0}}{{a}^{n}}+C_{n}^{1}{{a}^{n-1}}b+...+C_{n}^{n-1}a{{b}^{n-1}}+C_{n}^{n}{{b}^{n}}

2. Nhận xét

  • - Trong khai triển \displaystyle {{(a\pm b)}^{n}} có \displaystyle n+1 số hạng và các hệ số của các cặp số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau : \displaystyle C_{n}^{k}=C_{n}^{n-k}
  • - Số hạng tổng quát dạng : \displaystyle {{T}_{n+1}}=C_{n}^{k}{{a}^{n-k}}{{b}^{k}} và số hạng thứ \displaystyle N thì \displaystyle k=N-1.
  • - Trong khai triển \displaystyle {{(a-b)}^{n}} thì dấu đan nhau nghĩa là \displaystyle +, rồi \displaystyle -, rồi \displaystyle +,…..
  • - Số mũ của a giảm dần, số mũ của b tăng dần nhưng tổng số mũ của a và b bằng n.
  • - Nếu trong khai triển nhị thức Newton, ta gán cho a và b những giá trị đặc biệt thì sẽ thu được những công thức đặc biệt. Chẳng hạn như :
  •                \displaystyle {{(1+x)}^{n}}=C_{n}^{0}{{x}^{n}}+C_{n}^{1}{{x}^{n-1}}+....+C_{n}^{n}\xrightarrow{x=1}C_{n}^{0}+C_{n}^{1}+....+C_{n}^{n}={{2}^{n}}.
    • \displaystyle {{(1-x)}^{n}}=C_{n}^{0}{{x}^{n}}-C_{n}^{1}{{x}^{n-1}}+....+{{(-1)}^{n}}C_{n}^{n}\xrightarrow{x=1}C_{n}^{0}-C_{n}^{1}+....+{{(-1)}^{n}}C_{n}^{n}=0

Từ khai triển này ta có các kết quả sau

                        * C_{n}^{0}+C_{n}^{1}+...+C_{n}^{n}={{2}^{n}}

                        * C_{n}^{0}-C_{n}^{1}+C_{n}^{2}-...+{{(-1)}^{n}}C_{n}^{n}=0

3. Tam giác Pascal

Các hệ số của khai triển: \displaystyle {{(a+b)}^{0}},{{(a+b)}^{1}},{{(a+b)}^{2}},....,{{(a+b)}^{n}} có thể xếp thành một tam giác gọi

là tam giác PASCAL.

n = 0 :    1                            

n = 1 :     1    1

n = 2 :     1    2    1

n = 3 :    1    3    3    1

n = 4 :    1    4    6    4    1

n = 5 :    1    5    10    10    5    1

n = 6 :    1    6    15    20    15    6    1

n = 7 :    1    7    21    35    35    21    7    1

Hằng đẳng thức PASCAL

 

 


 

B. Bài tập

 

Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton

 

A. Phương pháp

Bước 1: Khai triển nhị thức Newton để tìm số hạng tổng quát:

{{\left( a{{x}^{p}}+b{{x}^{q}} \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{\left( a{{x}^{p}} \right)}^{n-k}}{{\left( b{{x}^{q}} \right)}^{k}}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}{{b}^{k}}{{x}^{np-pk+qk}}}

Bước 2: Dựa vào đề bài, giải phương trình hai số mũ bằng nhau:

Số hạng chứa {{x}^{m}} ứng với giá trị k thỏa: np-pk+qk=m.

Từ đó tìm k=\frac{m-np}{p-q}

Vậy hệ số của số hạng chứa {{x}^{m}} là: C_{n}^{k}{{a}^{n-k}}.{{b}^{k}} với giá trị k đã tìm được ở trên.

Nếu k không nguyên hoặc k>n thì trong khai triển không chứa {{x}^{m}}, hệ số phải tìm bằng 0.

Chú ý: Xác định hệ số của số hạng chứa {{x}^{m}} trong khai triển

P\left( x \right)={{\left( a+b{{x}^{p}}+c{{x}^{q}} \right)}^{n}}được viết dưới dạng{{a}_{0}}+{{a}_{1}}x+...+{{a}_{2n}}{{x}^{2n}}.

Ta làm như sau:

* Viết P\left( x \right)={{\left( a+b{{x}^{p}}+c{{x}^{q}} \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}{{\left( b{{x}^{p}}+c{{x}^{q}} \right)}^{k}}};

* Viết số hạng tổng quát khi khai triển các số hạng dạng {{\left( b{{x}^{p}}+c{{x}^{q}} \right)}^{k}} thành một đa thức theo luỹ thừa của x.

* Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của {{x}^{m}}.

Chú ý: Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn

Ta làm như sau:

* Tính hệ số {{a}_{k}} theo k và n;

* Giải bất phương trình {{a}_{k-1}}\le {{a}_{k}} với ẩn số k;

* Hệ số lớn nhất phải tìm ứng với số tự nhiên k lớn nhất thoả mãn bất phương trình trên.

B. Bài tập ví dụ

Ví dụ 1: Trong khai triển {{\left( 2a-b \right)}^{5}}, hệ số của số hạng thứ3bằng:

A. -80.                    B. 80.                   C. -10.                    D. 10.

Lời giải:

Chọn B.

Ta có: {{\left( 2a-b \right)}^{5}}=C_{5}^{0}{{\left( 2a \right)}^{5}}-C_{5}^{1}{{\left( 2a \right)}^{4}}b+C_{5}^{2}{{\left( 2a \right)}^{3}}{{b}^{2}}+...

Do đó hệ số của số hạng thứ3bằngC_{5}^{2}.8=80.

Ví dụ 2: Trong khai triển {{\left( 3{{x}^{2}}-y \right)}^{10}}, hệ số của số hạng chính giữa là:

A. {{3}^{4}}.C_{10}^{4}.                 B. -{{3}^{4}}.C_{10}^{4}.             C. {{3}^{5}}.C_{10}^{5}.             D. -{{3}^{5}}.C_{10}^{5}.

Lời giải:

Chọn D.

Trong khai triển {{\left( 3{{x}^{2}}-y \right)}^{10}}có tất cả 11 số hạng nên số hạng chính giữa là số hạng thứ 6.

Vậy hệ số của số hạng chính giữa là-{{3}^{5}}.C_{10}^{5}.

Ví dụ 3: Trong khai triển {{\left( x+\frac{2}{\sqrt[{}]{x}} \right)}^{6}}, hệ số của {{x}^{3}},\left( x>0 \right) là:

A. 60.                       B. 80.                       C. 160.                    D. 240.

Lời giải:

Chọn C.

Số hạng tổng quát trong khai triển trên là {{T}_{k+1}}=C_{6}^{k}.{{x}^{6-k}}{{2}^{k}}.{{x}^{-\frac{1}{2}k}}

Yêu cầu bài toán xảy ra khi 6-k-\frac{1}{2}k=3\Leftrightarrow k=3.

Khi đó hệ số của {{x}^{3}} là:C_{6}^{3}{{.2}^{3}}=160.

Ví dụ 4: Tìm hệ số của {{x}^{7}} trong khai triển biểu thức sau:
g(x)={{(1+x)}^{7}}+{{(1-x)}^{8}}+{{(2+x)}^{9}}

    A. 29                    B. 30                        C. 31                         D. 32

Lời giải:

Chọn A.

Hệ số của {{x}^{7}}trong khai triển {{(1+x)}^{7}}=\sum\limits_{k=0}^{7}{C_{7}^{k}{{x}^{k}}} là : C_{7}^{7}=1

Hệ số của {{x}^{7}}trong khai triển {{(1-x)}^{8}}=\sum\limits_{k=0}^{8}{C_{8}^{k}{{(-1)}^{k}}{{x}^{k}}} là : C_{8}^{7}{{(-1)}^{7}}=-8

Hệ số của {{x}^{7}}trong khai triển {{(1+x)}^{9}}=\sum\limits_{k=0}^{9}{C_{9}^{k}{{x}^{k}}} là : C_{7}^{9}=36.

Vậy hệ số chứa {{x}^{7}} trong khai triển g(x) thành đa thức là: 29.

Chú ý:

* Với a\ne 0 ta có: {{a}^{-n}}=\frac{1}{{{a}^{n}}} với n\in \mathbb{N}.

* Với a\ge 0 ta có: \sqrt[n]{{{a}^{m}}}={{a}^{\frac{m}{n}}} với m,n\in \mathbb{N};n\ge 1.    

Ví dụ 5: Tìm hệ số của số hạng chứa {{x}^{8}} trong khai triển nhị thức Niutơn của {{\left( \frac{1}{{{x}^{3}}}+\sqrt{{{x}^{5}}} \right)}^{n}} biết C_{n+4}^{n+1}-C_{n+3}^{n}=7\left( n+3 \right).

    A. 495                      B. 313                      C. 1303                        D. 13129

Lời giải:

Chọn A.

Ta có: C_{n+4}^{n+1}-C_{n+3}^{n}=7\left( n+3 \right)\Leftrightarrow \left( C_{n+3}^{n}+C_{n+3}^{n+1} \right)-C_{n+3}^{n}=7\left( n+3 \right)

        \Leftrightarrow C_{n+3}^{n+1}=7\left( n+3 \right)\Leftrightarrow \frac{\left( n+2 \right)\left( n+3 \right)}{2!}=7\left( n+3 \right)

        \Leftrightarrow n+2=7.2!=14\Leftrightarrow n=12.

Khi đó: {{\left( \frac{1}{{{x}^{3}}}+\sqrt{{{x}^{5}}} \right)}^{n}}=\sum\limits_{k=0}^{12}{C_{12}^{k}{{\left( {{x}^{-3}} \right)}^{k}}.{{\left( {{x}^{\frac{5}{2}}} \right)}^{12-k}}}=\sum\limits_{k=0}^{12}{C_{12}^{k}{{x}^{\frac{60-11k}{2}}}}.

Số hạng chứa {{x}^{8}} ứng với k thỏa: \frac{60-11k}{2}=8\Leftrightarrow k=4.

Do đó hệ số của số hạng chứa {{x}^{8}} là: C_{12}^{4}=\frac{12!}{4!\left( 12-4 \right)!}=495.

Ví dụ 6: Xác định hệ số của {{x}^{8}} trong các khai triển sau:f(x)={{(1+x+2{{x}^{2}})}^{10}}

    A. 37845                       B. 14131                    C. 324234                     D. 131239

Lời giải:

Chọn A.

Ta có: f(x)=\sum\limits_{k=0}^{10}{C_{10}^{k}{{(2{{x}^{2}})}^{10-k}}{{(1+x)}^{k}}}=\sum\limits_{k=0}^{10}{\sum\limits_{j=0}^{k}{C_{10}^{k}C_{k}^{j}{{.2}^{10-k}}{{x}^{20-2k+j}}}}

Số hạng chứa {{x}^{8}} ứng với cặp (k,j) thỏa: \left\{ \begin{array}{l}0\le j\le k\le 10\\j=2k-12\end{array} \right.

Nên hệ số của {{x}^{8}} là:

C_{10}^{6}C_{6}^{0}{{.2}^{4}}+C_{10}^{7}C_{7}^{2}{{2}^{3}}+C_{10}^{8}C_{8}^{4}{{2}^{2}}+C_{10}^{9}C_{9}^{6}2+C_{10}^{10}C_{10}^{8}=37845

 

Dạng 2. Tính tổng \sum\limits_{k=0}^{n}{{{a}_{k}}C_{n}^{k}}{{b}^{k}}

A. Phương pháp

Phương pháp 1: Dựa vào khai triển nhị thức Newton

{{(a+b)}^{n}}=C_{n}^{0}{{a}^{n}}+{{a}^{n-1}}bC_{n}^{1}+{{a}^{n-2}}{{b}^{2}}C_{n}^{2}+...+{{b}^{n}}C_{n}^{n}.

Ta chọn những giá trị a,b thích hợp thay vào đẳng thức trên.

Một số kết quả ta thường hay sử dụng:

C_{n}^{k}=C_{n}^{n-k}

C_{n}^{0}+C_{n}^{1}+...+C_{n}^{n}={{2}^{n}}

\sum\limits_{k=0}^{n}{{{(-1)}^{k}}C_{n}^{k}}=0

\sum\limits_{k=0}^{n}{C_{2n}^{2k}}=\sum\limits_{k=0}^{n}{C_{2n}^{2k-1}}=\frac{1}{2}\sum\limits_{k=0}^{2n}{C_{2n}^{k}}

\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{k}}}={{(1+a)}^{n}}.

Phương pháp 2: Dựa vào đẳng thức đặc trưng

Mẫu chốt của cách giải trên là ta tìm ra được đẳng thức (*) và ta thường gọi (*) là đẳng thức đặc trưng.

Cách giải ở trên được trình bày theo cách xét số hạng tổng quát ở vế trái (thường có hệ số chứa k) và biến đổi số hạng đó có hệ số không chứa k hoặc chứa k nhưng tổng mới dễ tính hơn hoặc đã có sẵn.

B. Bài tập ví dụ    

Ví dụ 1: Tính các tổng sau:

    a) {{S}_{1}}=C_{7}^{0}+2C_{7}^{1}+4C_{7}^{2}+8C_{7}^{3}+16C_{7}^{4}+32C_{7}^{5}+64C_{7}^{6}+128C_{7}^{7}.

    b) {{S}_{2}}={{3}^{10}}C_{10}^{0}-{{3}^{9}}C_{10}^{1}+...-{{3.2}^{9}}C_{10}^{9}+{{2}^{10}}C_{10}^{10}.

    c) {{S}_{3}}=C_{15}^{0}{{2}^{16}}+C_{15}^{2}{{2}^{14}}+C_{15}^{4}{{2}^{12}}+C_{15}^{6}{{2}^{10}}+C_{15}^{8}{{2}^{8}}+C_{15}^{10}{{2}^{6}}+C_{15}^{12}{{2}^{4}}+C_{15}^{14}{{2}^{2}}.

Lời giải:

    a) Ta có: {{\left( a+b \right)}^{7}}=C_{7}^{0}{{a}^{7}}+C_{7}^{1}{{a}^{6}}b+C_{7}^{2}{{a}^{5}}{{b}^{2}}+C_{7}^{3}{{a}^{4}}{{b}^{3}}+C_{7}^{4}{{a}^{3}}{{b}^{4}}+C_{7}^{5}{{a}^{2}}{{b}^{5}}+C_{7}^{6}a{{b}^{6}}+C_{7}^{7}{{b}^{7}}

    Chọn a=1,\,b=2 ta được {{\left( 1+2 \right)}^{7}}=C_{7}^{0}+2C_{7}^{1}+4C_{7}^{2}+8C_{7}^{3}+16C_{7}^{4}+32C_{7}^{5}+64C_{7}^{6}+128C_{7}^{7}.

    Vậy {{S}_{1}}={{3}^{7}}.

    b) Ta có: {{\left( a-b \right)}^{10}}=C_{10}^{0}{{a}^{10}}-C_{10}^{1}{{a}^{9}}b+C_{10}^{2}{{a}^{8}}{{b}^{2}}-...-C_{10}^{9}a{{b}^{9}}+C_{10}^{10}{{b}^{10}}.

    Chọn a=3,\,b=2 ta được: {{S}_{2}}=1.

    c) Ta có:

{{\left( x+1 \right)}^{15}}=C_{15}^{0}{{x}^{15}}+C_{15}^{1}{{x}^{14}}+C_{15}^{2}{{x}^{13}}+...+C_{15}^{14}x+C_{15}^{15}

    Cho x=1 ta được: \displaystyle {{2}^{15}}=C_{15}^{0}+C_{15}^{1}+C_{15}^{2}+...+C_{15}^{14}+C_{15}^{15} (1)

{{\left( x-1 \right)}^{15}}=C_{15}^{0}{{x}^{15}}-C_{15}^{1}{{x}^{14}}+C_{15}^{2}{{x}^{13}}-...+C_{15}^{14}x-C_{15}^{15}

    Cho x=1 ta được: \displaystyle 0=C_{15}^{0}-C_{15}^{1}+C_{15}^{2}-...+C_{15}^{14}-C_{15}^{15} (2)

    Cộng theo vế của (1) và (2) ta được:

    {{2}^{15}}=C_{15}^{0}{{2}^{16}}+C_{15}^{2}{{2}^{14}}+C_{15}^{4}{{2}^{12}}+C_{15}^{6}{{2}^{10}}+C_{15}^{8}{{2}^{8}}+C_{15}^{10}{{2}^{6}}+C_{15}^{12}{{2}^{4}}+C_{15}^{14}{{2}^{2}}.

Ví dụ 2: Tìm số nguyên dương n sao cho: C_{n}^{0}+2C_{n}^{1}+4C_{n}^{2}+...+{{2}^{n}}C_{n}^{n}=243

    A. 4                        B. 11                        C. 12                         D. 5

Lời giải:

Chọn D.

Xét khai triển: {{(1+x)}^{n}}=C_{n}^{0}+xC_{n}^{1}+{{x}^{2}}C_{n}^{2}+...+{{x}^{n}}C_{n}^{n}

Cho x=2 ta có: C_{n}^{0}+2C_{n}^{1}+4C_{n}^{2}+...+{{2}^{n}}C_{n}^{n}={{3}^{n}}

Do vậy ta suy ra {{3}^{n}}=243={{3}^{5}}\Rightarrow n=5.

Ví dụ 3: Tính tổng {{\left( C_{n}^{0} \right)}^{2}}+{{\left( C_{n}^{1} \right)}^{2}}+{{\left( C_{n}^{2} \right)}^{2}}+...+{{\left( C_{n}^{n} \right)}^{2}}    

    A. C_{2n}^{n}                     B. C_{2n}^{n-1}                   C. 2C_{2n}^{n}                        D. C_{2n-1}^{n-1}

Lời giải:

Chọn A.

Ta có:{{\left( x+1 \right)}^{n}}{{\left( 1+x \right)}^{n}}={{\left( x+1 \right)}^{2n}}.

Vế trái của hệ thức trên chính là:

\left( C_{n}^{0}{{x}^{n}}+C_{n}^{1}{{x}^{n-1}}+...+C_{n}^{n} \right)\left( C_{n}^{0}+C_{n}^{1}x+...+C_{n}^{n}{{x}^{n}} \right)

Và ta thấy hệ số của {{x}^{n}} trong vế trái là

{{\left( C_{n}^{0} \right)}^{2}}+{{\left( C_{n}^{1} \right)}^{2}}+{{\left( C_{n}^{2} \right)}^{2}}+...+{{\left( C_{n}^{n} \right)}^{2}}

Còn hệ số của {{x}^{n}} trong vế phải {{\left( x+1 \right)}^{2n}} là C_{2n}^{n}

Do đó {{\left( C_{n}^{0} \right)}^{2}}+{{\left( C_{n}^{1} \right)}^{2}}+{{\left( C_{n}^{2} \right)}^{2}}+...+{{\left( C_{n}^{n} \right)}^{2}}=C_{2n}^{n}

 

Thống kê thành viên
Tổng thành viên 17.774
Thành viên mới nhất HUYENLYS
Thành viên VIP mới nhất dungnt1980VIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về tpedu.vn


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại tpedu.vn là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • T&P Edu có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên tpedu.vn mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.

webhero.vn thietkewebbds.vn